Stability Analysis of Phase-Locked Bursting in Inhibitory Neuron Networks

نویسندگان

  • Sajiya Jesmin Jalil
  • SAJIYA JALIL
  • Andrey Shilnikov
  • Igor Belykh
  • Vladimir Bondarenko
  • Robert Clewley
چکیده

Networks of neurons, which form central pattern generators (CPGs), are important for controlling animal behaviors. Of special interest are configurations or CPG motifs composed of reciprocally inhibited neurons, such as half-center oscillators (HCOs). Bursting rhythms of HCOs are shown to include stable synchrony or in-phase bursting, which is a phase-locked state that has zero phase difference. This in-phase bursting can co-exist with anti-phase bursting, commonly expected as the single stable state in HCOs that are connected with fast non-delayed synapses. The finding contrasts with the classical view that reciprocal inhibition has to be slow or time-delayed to synchronize such bursting neurons. Phase-locked rhythms are analyzed via Lyapunov exponents estimated with variational equations, and through the convergence rates estimated with Poincaré return maps. A new mechanism underlying multistability is proposed that is based on the spike interactions, which confer a dual property on the fast non-delayed reciprocal inhibition; this reveals the role of spikes in generating multiple co-existing phase-locked rhythms. In particular, it demonstrates that the number and temporal characteristics of spikes determine the number and stability of the multiple phase-locked states in weakly coupled HCOs. The generality of the multistability phenomenon is demonstrated by analyzing diverse models of bursting networks with various inhibitory synapses; the individual cell models include the reduced leech heart interneuron, the Sherman model for pancreatic beta cells, the Purkinje neuron model and Fitzhugh-Rinzel phenomenological model. Finally, hypothetical and experiment-based CPGs composed of HCOs are investigated, and predictions that may be verified by electrophysiologists studying the sensory-motor systems are made. This study is relevant for various applications that use CPGs such as robotics, prosthetics, and artificial intelligence. INDEX WORDS: Bursting, Central pattern generator, Fast threshold modulation, Half-center oscillator, Inhibition, Lyapunov exponents, Multistability, Networks, Neurons, Phase-locking, Poincaré return maps, Synchrony, Variational equations STABILITY ANALYSIS OF PHASE-LOCKED BURSTING IN INHIBITORY NEURON NETWORKS

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spikes matter for phase-locked bursting in inhibitory neurons.

We show that inhibitory networks composed of two endogenously bursting neurons can robustly display several coexistent phase-locked states in addition to stable antiphase and in-phase bursting. This work complements and enhances our recent result [Jalil, Belykh, and Shilnikov, Phys. Rev. E 81, 045201(R) (2010)] that fast reciprocal inhibition can synchronize bursting neurons due to spike intera...

متن کامل

Synchronization in Neuronal Networks with Electrical and Chemical Coupling

Synchronized cortical activities in the central nervous systems of mammals are crucial for sensory perception, coordination, and locomotory function. The neuronal mechanisms that generate synchronous synaptic inputs in the neocortex are far from being fully understood. This thesis contributes toward an understanding of the emergence of synchronization in networks of bursting neurons as a highly...

متن کامل

Predictions of phase-locking in excitatory hybrid networks: excitation does not promote phase-locking in pattern-generating networks as reliably as inhibition.

Phase-locked activity is thought to underlie many high-level functions of the nervous system, the simplest of which are produced by central pattern generators (CPGs). It is not known whether we can define a theoretical framework that is sufficiently general to predict phase-locking in actual biological CPGs, nor is it known why the CPGs that have been characterized are dominated by inhibition. ...

متن کامل

Burst-Duration Mechanism of In-phase Bursting in Inhibitory Networks

We study the emergence of in-phase and anti-phase synchronized rhythms in bursting networks of Hodgkin–Huxley–type neurons connected by inhibitory synapses. We show that when the state of the individual neuron composing the network is close to the transition from bursting into tonic spiking, the appearance of the network’s synchronous rhythms becomes sensitive to small changes in parameters and...

متن کامل

Inhibitory synchronization of bursting in biological neurons: dependence on synaptic time constant.

Using the dynamic clamp technique, we investigated the effects of varying the time constant of mutual synaptic inhibition on the synchronization of bursting biological neurons. For this purpose, we constructed artificial half-center circuits by inserting simulated reciprocal inhibitory synapses between identified neurons of the pyloric circuit in the lobster stomatogastric ganglion. With natura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015